Probably the greatest challenge of the “21st century of the brain” is to understand how subcellular and cellular neuronal processes give rise to behavior – movement, perception, emotions, memory and creativity. This course will discuss, step-by-step, how modern molecular, optical, electrical, anatomical and theoretical methods have provided fascinating insights into the operation of the elementary building blocks of brains and, most importantly, how neuronal mechanisms underlie memory and learning processes. We will next discuss why computer simulations are so essential for understanding both neuronal “life ware” and the emergence of networks dynamics (e.g., as in the “Blue Brain Project”).

The course will start by highlighting a few recent brain-excitements, including treating the sick brain via electrical stimulation, recent attempts at “reading the brain code” for brain-machine interfaces, new neuro-anatomical techniques (“Brainbow” and connectomics) and physiological methods (optogenetics) that enables us to record/activate the living, behaving brain at single cell resolution. We will end by discussing emerging frontiers in brain research, including the interaction between brain research and the arts. As an added bonus, a lecture on perception, action, cognition and emotions will be taught by an acclaimed neuroscientists, Prof. Israel Nelken..